Ad-IRF-1 induces apoptosis in esophageal adenocarcinoma.
نویسندگان
چکیده
The nuclear transcription factor interferon regulatory factor-1 (IRF-1) is a putative tumor suppressor, but the expression and function of IRF-1 in esophageal adenocarcinoma (EA) remain unknown. We hypothesized that IRF-1 expression was reduced or lost in EA and that restoration of IRF-1 would result in the apoptosis of EA cells in vitro and the inhibition of tumor growth in vivo. Three EA cell lines were used to examine IRF-1 expression, IFN-gamma responsiveness, and the effects of IRF-1 overexpression using a recombinant adenoviral vector (Ad-IRF-1). All three EA cell lines produced IRF-1 protein following IFN-gamma stimulation, although IFN-gamma did not induce cell death. In contrast, Ad-IRF-1 infection resulted in high levels of IRF-1 protein and triggered apoptosis in all three EA cell lines. Potential mechanisms for the differential response to IFN-gamma versus Ad-IRF-1--such as modulation of c-Met or extracellular regulated kinase signaling, or altered expression of IRF-2, Fas, or survivin--were investigated, but none of these mechanisms can account for this observation. In vivo administration of IRF-1 in a murine model of EA modestly inhibited tumor growth, but did not lead to tumor regression. Strategies aimed at increasing or restoring IRF-1 expression may have therapeutic benefits in EA.
منابع مشابه
Ectopic expression of interferon regulatory factor-1 promotes human breast cancer cell death and results in reduced expression of survivin.
The overexpression of the inhibitor of apoptosis protein, survivin, may provide tumor cells with a distinct survival advantage in situ; hence, therapeutic strategies have been designed to inhibit its expression. In this study, we ectopically expressed the interferon regulatory factor (IRF)-1 protein in the breast carcinoma cell lines MDA-MB-468 and SK-BR-3 using a recombinant adenovirus (Ad-IRF...
متن کاملNegative Feedback Regulation of IFN-; Pathway by IFN Regulatory Factor 2 in Esophageal Cancers
IFN-; is an antitumor cytokine that inhibits cell proliferation and induces apoptosis after engagement with the IFN-; receptors (IFNGR) expressed on target cells, whereas IFN regulatory factor 2 (IRF-2) is able to block the effects of IFN-; by repressing transcription of IFN-;–induced genes. Thus far, few studies have explored the influences of IFN-; on human esophageal cancer cells. In the pre...
متن کاملInvolvement of IFN regulatory factor (IRF)-1 and IRF-2 in the formation and progression of human esophageal cancers.
IFN regulatory factor (IRF)-1 and IRF-2 are generally regarded as a tumor suppressor and an oncoprotein, respectively. However, little is known about their expression and function in esophageal squamous cell carcinomas (ESCC). In our present work, IRF-1 expression was decreased and IRF-2 expression was increased in ESCCs compared with matched normal esophageal tissues. Moreover, statistical dat...
متن کاملAdenocarcinoma Cells and Induces Apoptosis in Human Esophageal Selective Inhibition of Cyclooxygenase-2 Suppresses Growth
Adenocarcinoma in Barrett’s esophagus has been increasing in incidence at a rapid rate for more than two decades. Cyclooxygenase (COX)-2 appears to play an important role in gastrointestinal carcinogenesis, and COX-2 overexpression has been demonstrated both in esophageal adenocarcinomas and in the metaplastic epithelium of Barrett’s esophagus. The aim of our study was to determine whether sele...
متن کاملSelective inhibition of cyclooxygenase-2 suppresses growth and induces apoptosis in human esophageal adenocarcinoma cells.
Adenocarcinoma in Barrett's esophagus has been increasing in incidence at a rapid rate for more than two decades. Cyclooxygenase (COX)-2 appears to play an important role in gastrointestinal carcinogenesis, and COX-2 overexpression has been demonstrated both in esophageal adenocarcinomas and in the metaplastic epithelium of Barrett's esophagus. The aim of our study was to determine whether sele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neoplasia
دوره 8 1 شماره
صفحات -
تاریخ انتشار 2006